ACASĂ Vize Viza pentru Grecia Viză în Grecia pentru ruși în 2016: este necesar, cum se face

Toate valorile trigonometrice. Sinus, cosinus, tangentă și cotangentă - tot ce trebuie să știți la examenul de stat unificat la matematică

Trigonometria, ca știință, își are originea în Orientul Antic. Primele rapoarte trigonometrice au fost obținute de astronomi pentru a crea un calendar precis și o orientare a stelelor. Aceste calcule s-au referit la trigonometria sferică, în timp ce la cursul școlar se studiază raportul dintre laturile și unghiurile unui triunghi plan.

Trigonometria este o ramură a matematicii care se ocupă de proprietățile funcțiilor trigonometrice și de relațiile dintre laturile și unghiurile triunghiurilor.

În perioada de glorie a culturii și științei din mileniul I d.Hr., cunoștințele s-au răspândit din Orientul Antic până în Grecia. Dar principalele descoperiri ale trigonometriei sunt meritul oamenilor din Califatul Arab. În special, omul de știință turkmen al-Marazwi a introdus funcții precum tangenta și cotangenta și a compilat primele tabele de valori pentru sinusuri, tangente și cotangente. Conceptele de sinus și cosinus au fost introduse de oamenii de știință indieni. Trigonometria a primit multă atenție în lucrările unor figuri atât de mari ale antichității precum Euclid, Arhimede și Eratostene.

Mărimi de bază ale trigonometriei

Funcțiile trigonometrice de bază ale unui argument numeric sunt sinus, cosinus, tangentă și cotangentă. Fiecare dintre ele are propriul grafic: sinus, cosinus, tangent și cotangent.

Formulele pentru calcularea valorilor acestor mărimi se bazează pe teorema lui Pitagora. Este mai bine cunoscut școlarilor în formula: „Pantaloni pitagoreici, egali în toate direcțiile”, deoarece dovada este dată folosind exemplul unui triunghi dreptunghic isoscel.

Sinus, cosinus și alte relații stabilesc relația dintre unghiurile ascuțite și laturile oricărui triunghi dreptunghic. Să prezentăm formule pentru calcularea acestor mărimi pentru unghiul A și să urmărim relațiile dintre funcțiile trigonometrice:

După cum puteți vedea, tg și ctg sunt funcții inverse. Dacă ne imaginăm catetul a ca produsul dintre sin A și ipotenuza c și catetul b ca cos A * c, obținem următoarele formule pentru tangentă și cotangentă:

Cercul trigonometric

Grafic, relația dintre cantitățile menționate poate fi reprezentată astfel:

Cercul, în acest caz, reprezintă toate valorile posibile ale unghiului α - de la 0° la 360°. După cum se poate observa din figură, fiecare funcție ia o valoare negativă sau pozitivă în funcție de unghi. De exemplu, sin α va avea semnul „+” dacă α aparține primului și al doilea sferturi de cerc, adică se află în intervalul de la 0° la 180°. Pentru α de la 180° la 360° (sferturile III și IV), sin α poate fi doar o valoare negativă.

Să încercăm să construim tabele trigonometrice pentru anumite unghiuri și să aflăm semnificația cantităților.

Valorile lui α egale cu 30°, 45°, 60°, 90°, 180° și așa mai departe sunt numite cazuri speciale. Valorile funcțiilor trigonometrice pentru acestea sunt calculate și prezentate sub formă de tabele speciale.

Aceste unghiuri nu au fost alese la întâmplare. Denumirea π din tabele este pentru radiani. Rad este unghiul la care lungimea arcului de cerc corespunde razei acestuia. Această valoare a fost introdusă pentru a stabili o dependență universală; la calcularea în radiani, lungimea reală a razei în cm nu contează.

Unghiurile din tabele pentru funcțiile trigonometrice corespund valorilor radianilor:

Deci, nu este greu de ghicit că 2π este un cerc complet sau 360°.

Proprietățile funcțiilor trigonometrice: sinus și cosinus

Pentru a lua în considerare și a compara proprietățile de bază ale sinusului și cosinusului, tangentei și cotangentei, este necesar să le trasăm funcțiile. Acest lucru se poate face sub forma unei curbe situate într-un sistem de coordonate bidimensional.

Luați în considerare tabelul comparativ de proprietăți pentru sinus și cosinus:

Undă sinusoidalăCosinus
y = sinxy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, pentru x = πk, unde k ϵ Zcos x = 0, pentru x = π/2 + πk, unde k ϵ Z
sin x = 1, pentru x = π/2 + 2πk, unde k ϵ Zcos x = 1, la x = 2πk, unde k ϵ Z
sin x = - 1, la x = 3π/2 + 2πk, unde k ϵ Zcos x = - 1, pentru x = π + 2πk, unde k ϵ Z
sin (-x) = - sin x, adică funcția este imparăcos (-x) = cos x, adică funcția este pară
funcția este periodică, cea mai mică perioadă este 2π
sin x › 0, cu x aparținând trimestrului 1 și 2 sau de la 0° la 180° (2πk, π + 2πk)cos x › 0, cu x aparținând sferturilor I și IV sau de la 270° la 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, cu x aparținând celui de-al treilea și al patrulea sferturi sau de la 180° la 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, cu x aparținând trimestrului 2 și 3 sau de la 90° la 270° (π/2 + 2πk, 3π/2 + 2πk)
crește în intervalul [- π/2 + 2πk, π/2 + 2πk]crește pe intervalul [-π + 2πk, 2πk]
scade pe intervale [π/2 + 2πk, 3π/2 + 2πk]scade pe intervale
derivată (sin x)’ = cos xderivată (cos x)’ = - sin x

Determinarea dacă o funcție este pară sau nu este foarte simplă. Este suficient să vă imaginați un cerc trigonometric cu semnele cantităților trigonometrice și să „pliați” mental graficul în raport cu axa OX. Dacă semnele coincid, funcția este pară, în caz contrar, este impară.

Introducerea radianilor și listarea proprietăților de bază ale undelor sinus și cosinus ne permit să prezentăm următorul model:

Este foarte ușor să verifici dacă formula este corectă. De exemplu, pentru x = π/2, sinusul este 1, la fel și cosinusul lui x = 0. Verificarea se poate face prin consultarea tabelelor sau prin trasarea curbelor funcției pentru valori date.

Proprietățile tangentsoidelor și cotangentsoidelor

Graficele funcțiilor tangente și cotangente diferă semnificativ de funcțiile sinus și cosinus. Valorile tg și ctg sunt reciproce reciproce.

  1. Y = tan x.
  2. Tangenta tinde spre valorile lui y la x = π/2 + πk, dar nu le atinge niciodată.
  3. Cea mai mică perioadă pozitivă a tangentoidului este π.
  4. Tg (- x) = - tg x, adică funcția este impară.
  5. Tg x = 0, pentru x = πk.
  6. Funcția este în creștere.
  7. Tg x › 0, pentru x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, pentru x ϵ (— π/2 + πk, πk).
  9. Derivată (tg x)’ = 1/cos 2 ⁡x.

Luați în considerare imaginea grafică a cotangentoidului de mai jos în text.

Principalele proprietăți ale cotangentoidelor:

  1. Y = pat x.
  2. Spre deosebire de funcțiile sinus și cosinus, în tangentoidul Y poate prelua valorile mulțimii tuturor numerelor reale.
  3. Cotangentoidul tinde spre valorile lui y la x = πk, dar nu le atinge niciodată.
  4. Cea mai mică perioadă pozitivă a unui cotangentoid este π.
  5. Ctg (- x) = - ctg x, adică funcția este impară.
  6. Ctg x = 0, pentru x = π/2 + πk.
  7. Funcția este în scădere.
  8. Ctg x › 0, pentru x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, pentru x ϵ (π/2 + πk, πk).
  10. Derivată (ctg x)’ = - 1/sin 2 ⁡x Corect
În secolul al V-lea î.Hr., filosoful antic grec Zenon din Elea și-a formulat celebrele aporii, dintre care cea mai faimoasă este aporia „Achile și țestoasa”. Iată cum sună:

Să presupunem că Ahile aleargă de zece ori mai repede decât țestoasa și este la o mie de pași în spatele ei. În timpul necesar lui Ahile pentru a parcurge această distanță, țestoasa se va târa o sută de pași în aceeași direcție. Când Ahile aleargă o sută de pași, țestoasa se târăște încă zece pași și așa mai departe. Procesul va continua la infinit, Ahile nu va ajunge niciodată din urmă cu țestoasa.

Acest raționament a devenit un șoc logic pentru toate generațiile următoare. Aristotel, Diogene, Kant, Hegel, Hilbert... Toți au considerat într-un fel sau altul aporia lui Zenon. Șocul a fost atât de puternic încât " ... discuțiile continuă până astăzi; comunitatea științifică nu a reușit încă să ajungă la o opinie comună cu privire la esența paradoxurilor... analiza matematică, teoria mulțimilor, noi abordări fizice și filozofice au fost implicate în studiul problemei ; niciunul dintre ele nu a devenit o soluție general acceptată la problemă...„[Wikipedia, „Aporia lui Zeno”. Toată lumea înțelege că sunt păcăliți, dar nimeni nu înțelege în ce constă înșelăciunea.

Din punct de vedere matematic, Zenon în aporia sa a demonstrat clar trecerea de la cantitate la . Această tranziție presupune aplicare în loc de cele permanente. Din câte am înțeles, aparatul matematic pentru utilizarea unităților de măsură variabile fie nu a fost încă dezvoltat, fie nu a fost aplicat aporiei lui Zeno. Aplicarea logicii noastre obișnuite ne duce într-o capcană. Noi, datorită inerției gândirii, aplicăm unități constante de timp valorii reciproce. Din punct de vedere fizic, se pare că timpul încetinește până când se oprește complet în momentul în care Ahile ajunge din urmă cu țestoasa. Dacă timpul se oprește, Ahile nu mai poate depăși țestoasa.

Dacă ne întoarcem logica obișnuită, totul cade la locul său. Ahile aleargă cu o viteză constantă. Fiecare segment ulterior al drumului său este de zece ori mai scurt decât cel anterior. În consecință, timpul petrecut pentru depășirea acestuia este de zece ori mai mic decât cel anterior. Dacă aplicăm conceptul de „infinit” în această situație, atunci ar fi corect să spunem „Achile va ajunge din urmă broasca testoasă infinit de repede”.

Cum să eviți această capcană logică? Rămâneți în unități constante de timp și nu treceți la unități reciproce. În limbajul lui Zeno arată astfel:

În timpul necesar lui Ahile să alerge o mie de pași, țestoasa se va târa o sută de pași în aceeași direcție. În următorul interval de timp egal cu primul, Ahile va alerga încă o mie de pași, iar țestoasa se va târa o sută de pași. Acum Ahile este cu opt sute de pași înaintea țestoasei.

Această abordare descrie în mod adecvat realitatea fără niciun paradox logic. Dar aceasta nu este o soluție completă a problemei. Afirmația lui Einstein despre irezistibilitatea vitezei luminii este foarte asemănătoare cu aporia lui Zeno „Achile și broasca țestoasă”. Mai trebuie să studiem, să regândim și să rezolvăm această problemă. Iar soluția trebuie căutată nu în număr infinit de mare, ci în unități de măsură.

O altă aporie interesantă a lui Zeno spune despre o săgeată zburătoare:

O săgeată zburătoare este nemișcată, deoarece în fiecare moment de timp este în repaus și, deoarece este în repaus în fiecare moment de timp, este întotdeauna în repaus.

În această aporie, paradoxul logic este depășit foarte simplu - este suficient să clarificăm că în fiecare moment de timp o săgeată zburătoare este în repaus în diferite puncte din spațiu, care, de fapt, este mișcare. Un alt punct trebuie remarcat aici. Dintr-o fotografie a unei mașini de pe șosea este imposibil să se determine nici faptul mișcării acesteia, fie distanța până la ea. Pentru a determina dacă o mașină se mișcă, aveți nevoie de două fotografii făcute din același punct în momente diferite, dar nu puteți determina distanța față de ele. Pentru a determina distanța până la o mașină, aveți nevoie de două fotografii făcute din diferite puncte ale spațiului la un moment dat, dar din ele nu puteți determina faptul mișcării (desigur, mai aveți nevoie de date suplimentare pentru calcule, trigonometria vă va ajuta ). Ceea ce vreau să atrag atenția în mod deosebit este că două puncte în timp și două puncte în spațiu sunt lucruri diferite care nu trebuie confundate, deoarece oferă oportunități diferite de cercetare.

miercuri, 4 iulie 2018

Diferențele dintre set și multiset sunt descrise foarte bine pe Wikipedia. Să vedem.

După cum puteți vedea, „nu pot exista două elemente identice într-o mulțime”, dar dacă există elemente identice într-o mulțime, un astfel de set se numește „multiset”. Ființele rezonabile nu vor înțelege niciodată o asemenea logică absurdă. Acesta este nivelul papagalilor vorbitori și al maimuțelor dresate, care nu au inteligență din cuvântul „complet”. Matematicienii acționează ca formatori obișnuiți, propovăduindu-ne ideile lor absurde.

Pe vremuri, inginerii care au construit podul se aflau într-o barcă sub pod în timp ce testau podul. Dacă podul s-a prăbușit, inginerul mediocru a murit sub dărâmăturile creației sale. Dacă podul putea rezista la sarcină, talentatul inginer a construit alte poduri.

Indiferent de cât de matematicieni se ascund în spatele expresiei „amintește-mă, sunt în casă” sau, mai degrabă, „matematica studiază concepte abstracte”, există un cordon ombilical care le conectează inextricabil cu realitatea. Acest cordon ombilical este bani. Să aplicăm teoria mulțimilor matematicienilor înșiși.

Am studiat foarte bine matematica și acum stăm la casa de marcat, dăm salarii. Deci un matematician vine la noi pentru banii lui. Îi numărăm întreaga sumă și o întindem pe masa noastră în grămezi diferite, în care punem bancnote de aceeași valoare. Apoi luăm o bancnotă din fiecare grămadă și îi dăm matematicianului „setul său matematic de salariu”. Să-i explicăm matematicianului că va primi bancnotele rămase doar atunci când va dovedi că o mulțime fără elemente identice nu este egală cu o mulțime cu elemente identice. Aici începe distracția.

În primul rând, logica deputaților va funcționa: „Acest lucru poate fi aplicat altora, dar nu și mie!” Apoi vor începe să ne liniștească că bancnotele de aceeași denominație au numere de bancnote diferite, ceea ce înseamnă că nu pot fi considerate aceleași elemente. Bine, să numărăm salariile în monede - nu există numere pe monede. Aici matematicianul va începe să-și amintească frenetic de fizică: diferite monede au cantități diferite de murdărie, structura cristalină și aranjarea atomilor este unică pentru fiecare monedă...

Și acum am cea mai interesantă întrebare: unde este linia dincolo de care elementele unui multiset se transformă în elemente ale unui set și invers? O astfel de linie nu există - totul este hotărât de șamani, știința nu este nici măcar aproape să zacă aici.

Uite aici. Selectăm stadioane de fotbal cu aceeași suprafață de teren. Zonele câmpurilor sunt aceleași - ceea ce înseamnă că avem un multiset. Dar dacă ne uităm la numele acestor stadioane, obținem multe, pentru că numele sunt diferite. După cum puteți vedea, același set de elemente este atât un set, cât și un multiset. Care este corect? Și aici matematicianul-șamanul-ascuțitor scoate un as de atuuri din mânecă și începe să ne vorbească fie despre un set, fie despre un multiset. În orice caz, ne va convinge că are dreptate.

Pentru a înțelege cum funcționează șamanii moderni cu teoria mulțimilor, legând-o de realitate, este suficient să răspundem la o întrebare: prin ce diferă elementele unui set de elementele altui set? Vă voi arăta, fără niciun „conceput ca nu un singur întreg” sau „neconceput ca un singur întreg”.

Duminică, 18 martie 2018

Suma cifrelor unui număr este un dans al șamanilor cu o tamburină, care nu are nimic de-a face cu matematica. Da, la lecțiile de matematică suntem învățați să găsim suma cifrelor unui număr și să o folosim, dar de aceea ei sunt șamani, pentru a-și învăța descendenții abilitățile și înțelepciunea, altfel șamanii pur și simplu vor muri.

Ai nevoie de dovezi? Deschideți Wikipedia și încercați să găsiți pagina „Suma cifrelor unui număr”. Ea nu există. Nu există nicio formulă în matematică care să poată fi folosită pentru a găsi suma cifrelor oricărui număr. La urma urmei, numerele sunt simboluri grafice cu care scriem numere, iar în limbajul matematicii sarcina sună astfel: „Găsiți suma simbolurilor grafice care reprezintă orice număr”. Matematicienii nu pot rezolva această problemă, dar șamanii o pot face cu ușurință.

Să ne dăm seama ce și cum facem pentru a găsi suma cifrelor unui număr dat. Și așa, să avem numărul 12345. Ce trebuie făcut pentru a găsi suma cifrelor acestui număr? Să luăm în considerare toți pașii în ordine.

1. Notează numărul pe o foaie de hârtie. Ce am făcut? Am convertit numărul într-un simbol numeric grafic. Aceasta nu este o operație matematică.

2. Tăiem o imagine rezultată în mai multe imagini care conțin numere individuale. Decuparea unei imagini nu este o operație matematică.

3. Convertiți simbolurile grafice individuale în numere. Aceasta nu este o operație matematică.

4. Adăugați numerele rezultate. Acum asta e matematica.

Suma cifrelor numărului 12345 este 15. Acestea sunt „cursurile de tăiere și cusut” predate de șamani pe care le folosesc matematicienii. Dar asta nu este tot.

Din punct de vedere matematic, nu contează în ce sistem de numere scriem un număr. Deci, în sisteme de numere diferite, suma cifrelor aceluiași număr va fi diferită. În matematică, sistemul numeric este indicat ca indice în dreapta numărului. Cu numărul mare 12345, nu vreau să-mi păcălesc capul, să luăm în considerare numărul 26 din articolul despre. Să scriem acest număr în sisteme de numere binar, octal, zecimal și hexazecimal. Nu ne vom uita la fiecare pas la microscop; am făcut-o deja. Să ne uităm la rezultat.

După cum puteți vedea, în sisteme numerice diferite, suma cifrelor aceluiași număr este diferită. Acest rezultat nu are nimic de-a face cu matematica. Este la fel ca și cum ai determina aria unui dreptunghi în metri și centimetri, ai obține rezultate complet diferite.

Zero arată la fel în toate sistemele de numere și nu are sumă de cifre. Acesta este un alt argument în favoarea faptului că. Întrebare pentru matematicieni: cum este ceva care nu este un număr desemnat în matematică? Ce, pentru matematicieni nu există nimic în afară de numere? Pot permite asta șamanilor, dar nu și oamenilor de știință. Realitatea nu este doar despre cifre.

Rezultatul obținut ar trebui considerat ca o dovadă că sistemele numerice sunt unități de măsură pentru numere. La urma urmei, nu putem compara numerele cu unități de măsură diferite. Dacă aceleași acțiuni cu diferite unități de măsură ale aceleiași mărimi duc la rezultate diferite după compararea lor, atunci acest lucru nu are nimic de-a face cu matematica.

Ce este matematica reală? Acesta este momentul în care rezultatul unei operații matematice nu depinde de mărimea numărului, de unitatea de măsură folosită și de cine efectuează această acțiune.

Semnează pe uşă El deschide ușa și spune:

Oh! Asta nu este toaleta pentru femei?
- Femeie tânără! Acesta este un laborator pentru studiul sfințeniei nefilice a sufletelor în timpul înălțării lor la cer! Halo în partea de sus și săgeată în sus. Ce altă toaletă?

Femeie... Aureola de sus și săgeata în jos sunt masculine.

Dacă o astfel de operă de artă de design îți fulgerează în fața ochilor de mai multe ori pe zi,

Atunci nu este surprinzător că găsiți brusc o pictogramă ciudată în mașina dvs.:

Personal, fac un efort să văd minus patru grade la o persoană care face caca (o poză) (o compoziție din mai multe imagini: un semn minus, numărul patru, o denumire de grade). Și nu cred că această fată este o proastă care nu știe fizică. Ea are doar un stereotip puternic de a percepe imaginile grafice. Și matematicienii ne învață asta tot timpul. Iată un exemplu.

1A nu este „minus patru grade” sau „unu a”. Acesta este „pooping om” sau numărul „douăzeci și șase” în notație hexazecimală. Acei oameni care lucrează constant în acest sistem numeric percep automat un număr și o literă ca un simbol grafic.

Tabelul de valori ale funcțiilor trigonometrice

Notă. Acest tabel de valori ale funcției trigonometrice folosește semnul √ pentru a reprezenta rădăcina pătrată. Pentru a indica o fracție, utilizați simbolul „/”.

Vezi si materiale utile:

Pentru determinarea valorii unei funcţii trigonometrice, găsiți-l la intersecția dreptei care indică funcția trigonometrică. De exemplu, sinus 30 de grade - căutăm coloana cu titlul sin (sinus) și găsim intersecția acestei coloane de tabel cu rândul „30 de grade”, la intersecția lor citim rezultatul - o jumătate. În mod similar găsim cosinus 60 grade, sinus 60 grade (din nou, la intersecția coloanei sin și a liniei de 60 de grade găsim valoarea sin 60 = √3/2), etc. Valorile sinusurilor, cosinusurilor și tangentelor altor unghiuri „populare” se găsesc în același mod.

Sinus pi, cosinus pi, tangentă pi și alte unghiuri în radiani

Tabelul de mai jos cu cosinus, sinusuri și tangente este, de asemenea, potrivit pentru a afla valoarea funcțiilor trigonometrice al căror argument este dat în radiani. Pentru a face acest lucru, utilizați a doua coloană de valori unghiulare. Datorită acestui fapt, puteți converti valoarea unghiurilor populare de la grade la radiani. De exemplu, să găsim unghiul de 60 de grade pe prima linie și să citim sub ea valoarea în radiani. 60 de grade este egal cu π/3 radiani.

Numărul pi exprimă fără ambiguitate dependența circumferinței de măsura gradului unghiului. Astfel, radianii pi sunt egali cu 180 de grade.

Orice număr exprimat în termeni de pi (radiani) poate fi ușor convertit în grade prin înlocuirea pi (π) cu 180.

Exemple:
1. Sine pi.
sin π = sin 180 = 0
astfel, sinusul lui pi este același cu sinusul de 180 de grade și este egal cu zero.

2. Cosinus pi.
cos π = cos 180 = -1
astfel, cosinusul lui pi este același cu cosinusul de 180 de grade și este egal cu minus unu.

3. Tangenta pi
tg π = tg 180 = 0
astfel, tangenta pi este aceeași cu tangenta 180 de grade și este egală cu zero.

Tabelul valorilor sinus, cosinus, tangente pentru unghiuri 0 - 360 de grade (valori comune)

valoarea unghiului α
(grade)

valoarea unghiului α
în radiani

(prin pi)

păcat
(sinus)
cos
(cosinus)
tg
(tangentă)
ctg
(cotangentă)
sec
(secantă)
cosec
(cosecant)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Dacă în tabelul de valori ale funcțiilor trigonometrice este indicată o liniuță în locul valorii funcției (tangente (tg) 90 de grade, cotangentă (ctg) 180 de grade), atunci pentru o anumită valoare a gradului de măsurare a unghiului funcția nu are o valoare anume. Dacă nu există liniuță, celula este goală, ceea ce înseamnă că nu am introdus încă valoarea necesară. Suntem interesați de ce interogări vin utilizatorii la noi și completăm tabelul cu noi valori, în ciuda faptului că datele actuale despre valorile cosinusurilor, sinusurilor și tangentelor celor mai comune valori ale unghiului sunt destul de suficiente pentru a rezolva cele mai multe Probleme.

Tabelul de valori ale funcțiilor trigonometrice sin, cos, tg pentru cele mai populare unghiuri
0, 15, 30, 45, 60, 90 ... 360 de grade
(valori numerice „conform tabelelor Bradis”)

valoarea unghiului α (grade) valoarea unghiului α în radiani păcat (sinus) cos (cosinus) tg (tangent) ctg (cotangent)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Centrat într-un punct A.
α - unghi exprimat în radiani.

Definiție
Sinus (sin α) este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetului opus |BC| la lungimea ipotenuzei |AC|.

Cosinus (cos α) este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetei adiacente |AB| la lungimea ipotenuzei |AC|.

Notatii acceptate

;
;
.

;
;
.

Graficul funcției sinus, y = sin x

Graficul funcției cosinus, y = cos x


Proprietățile sinusului și cosinusului

Periodicitate

Funcțiile y = sin xși y = cos x periodic cu punct .

Paritate

Funcția sinus este impară. Funcția cosinus este pară.

Domeniul definirii si valorilor, extrema, crestere, scadere

Funcțiile sinus și cosinus sunt continue în domeniul lor de definiție, adică pentru tot x (vezi dovada continuității). Principalele lor proprietăți sunt prezentate în tabel (n - întreg).

y = sin x y = cos x
Domeniul de aplicare și continuitatea - ∞ < x < + ∞ - ∞ < x < + ∞
Gama de valori -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Crescând
Descendentă
Maxima, y ​​= 1
Minima, y ​​= - 1
Zerouri, y = 0
Interceptarea punctelor cu axa ordonatelor, x = 0 y = 0 y = 1

Formule de bază

Suma pătratelor sinusului și cosinusului

Formule pentru sinus și cosinus din sumă și diferență



;
;

Formule pentru produsul sinusurilor și cosinusurilor

Formule de sumă și diferență

Exprimarea sinusului prin cosinus

;
;
;
.

Exprimarea cosinusului prin sinus

;
;
;
.

Exprimarea prin tangentă

; .

Când avem:
; .

La:
; .

Tabelul sinusurilor și cosinusurilor, tangentelor și cotangentelor

Acest tabel arată valorile sinusurilor și cosinusurilor pentru anumite valori ale argumentului.

Expresii prin variabile complexe


;

formula lui Euler

Expresii prin funcții hiperbolice

;
;

Derivate

; . Derivarea formulelor > > >

Derivate de ordin al n-lea:
{ -∞ < x < +∞ }

Secant, cosecant

Funcții inverse

Funcțiile inverse ale sinusului și cosinusului sunt arcsinus și, respectiv, arccosinus.

Arcsin, arcsin

Arccosine, arccos

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți, „Lan”, 2009.