ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Силы ван-дер-ваальса "ориентационные, индукционные, дисперсионные ". Межмолекулярное взаимодействие Силы вандер ваальса

Большой цикл работ Е.М. Лифшица посвящен построению общей теор ии сил молекулярного взаимодействия, или сил Ван-дер-Ваальса, между конденсиро-ванными телами. Существование таких сил между атомами и молекулами было постул ировано Ван-дер-Ваальсом на основе анализа отклонений свойств газов от идеальности. В 1930 году Ф. Лондон, используя квантовую механику, вычислил закон взаимодействия атомов на больших расстояниях между ними. Оказалось, что атомы взаимно притягиваются с энерги ей взаимодействия убывающей по за-кону 1/R 6 . Следующий шаг был сделан Г. Казимиром и Д. Польдером в 1946 году. Они показали, что на «самых больших» расстояниях, много больших характерной длины волны в спектре поглощения атома, вступают в силу эффекты релятиви ст-ского запаздывания электромагнитного взаимодействия и закон убывания сме-няется на 1/R 7 . Метод, примененный в этих работах, пригоден только для вычис-ления взаимодействия между объектами малого размера. В некотором смысл е обратный предельный случай Казимир рассмотрел в 1950 г. Он вычислил энерги ю взаимодействия между двумя идеально проводящими металлическими плоскостя-ми. Существенно, что эта энерги я была вычислена как энерги я нулевых колебаний электромагнитного поля в пространстве между плоскостями, точнее — как завися-щая от расстояния между плоскостями часть этой энерги и. Тем самым было под-черкнуто флуктуационное происхождение сил.

Е.М. Лифшицу удалось построить общую теор ию сил взаимодействия между про-извольными макроскопическими телами. (Работы 23, 25, 26.) Эта теор ия справедли-ва для тел произвольной формы и размеров с произвольными диэлектрическими свой-ствами. Она автоматически включает в рассмотрение эффекты запаздывания. Для вычисления сил в этой теор ии необходимо знать диэлектрическую проницаемость взаимодействующих тел в достаточно широком интервале частот.

Исходным пунктом расчета является выражение для максвелловского тензора электромагнитных натяжений вблизи тела. Входящие в это выражение квадратич-ные комбинации напряженностей электрического и магнитного полей вычисляются с помощью теор ии флуктуаций электромагнитного поля, развитой С.М. Рытовым, которая учитывает как нулевые, так и тепловые флуктуации 1). Поэтому теор ия Лиф-шица описывает и зависимость сил от температуры.

1) В дальнейшем Ландау и Лифшиц дали строгое микроскопическое обоснование теор ии Рыто-ва, основанное на использовании флуктуационно-диссипативной теор емы Г. Каллена и Т. Вельтона . Этот важный результат не был, однако, опубликован в виде статьи, а включен авторами в их книгу «Электродинамика сплошных сред». В работе 26 эта теор ема была применена для построения тео-рии флуктуаций для жидкости, описываемой уравнениями гидродинамики.

Теория была применена Е.М. Лифшицем для вычисления сил взаимодействия между диэлектрическими плоскостями. При этом все известные ранее выражения для сил оказались предельными случаями полученной общей формулы. Конк-ретные числовые значения удалось получить для кварца, диэлектрические свой-ства которого были хорошо изучены. Первые же эксперименты привели к под-тверждению теор ии. Описание этих экспериментов можно найти в работе 31, на-писанной вместе с экспериментаторами. В настоящее время теор ия проверена с большой точностью во всех деталях.

Теория Лифшица имела одно существенное ограничение. Тела должны были быть разделены вакуумом. Если тела разделены диэлектриком, например погру-жены в диэлектрическую жидкость, примененный метод не годится. Дело в том, что выражение для тензора напряжений электромагнитного поля в поглощаю-щей среде неизвестно. А любой диэлектрик имеет поглощение в некотором ин-тервале частот, и как раз эти частоты существенны для вычисления сил.

Эту трудность посчастливилось преодолеть в 1959 году И.Е. Дзялошинскому и автору настоящего предисловия. Мы показали, что, в отличие от тензора напря-жений произвольного электромагнитного поля, тензор напряжений равновесных электромагнитных флуктуации в поглощающей среде может быть найден. Зада-ча сводится к вычислению функции Грина уравнений Максвелла для исследуе-мых тел. Этот результат позволил обобщить теор ию на случай тел, разделенных диэлектриком, что и было произведено И.Е. Дзялошинским , Е.М. Лифшицем и Л.П. Питаевским в работе 33. При этом оказалось, что взаимодействие в некото-рых случаях соответствует отталкиванию между телами. Удалось также вычис-лить зависимость химического потенциал а жидкой пленки от ее толщины, игра-ющую решающую роль во многих поверхностных явлениях.

Окончательный вариант теор ии был изложен теми же тремя авторами в обзо-ре 34. Эта статья и сейчас является одной из самых цитируемых в данной области.

Способность некоторых животных – мух, муравьев, гекконов – удерживаться на стенах и потолке раньше объясняли наличием на лапках животных присосок, выделением клея и т.п.

А так ли это на самом деле?

Ответ на этот вопрос решили поискать биологи из Университета г. Вюрцбурга (ФРГ) и Массачусетского университета (США).

Ученые проследили за движением пчел и муравьев по оконному стеклу. Наблюдение под микроскопом позволило установить, что на кончике каждой лапки насекомого имеется пара микроскопических коготков. Они идут в ход, когда есть хоть малейшая возможность зацепиться за неровности. Между коготками имеется подушечка – аролиум . Она используется в тех случаях, когда стенка оказывается слишком гладкой и коготки скользят.

Поверхность этой подушечки смазана клеевидным веществом, природа которого пока непонятна. Удивительно, что насекомое может регулировать его липкость. По одной из версий эта регуляция объясняется сверхслабыми токами, которые передаются по нервным окончаниям.

А вот геккон «переплюнул» и пчел, и, муравьев. Физикам пришлось изрядно поломать голову над способом его передвижения по стенам и потолку. Одно время думали, что весь секрет в уникальных присосках, которыми снабжены лапы. Потом уповали на клей, которым-де они смазаны.

Теперь американские ученые разгадали загадку геккона: при движении он использует законы молекулярной физики! К такому поразительному выводу пришла группа ученых «Гекко», которую возглавляют физиолог К.Отан из колледжа Льюиса и Кларка в г. Портленд (США) и физик Р.Фул из знаменитого Калтеха в г. Беркли (США).

Когда геккон взбегает вверх по стенке, он может удержаться даже на одной прилипшей к поверхности лапке. Однако при этом незаметно, чтобы геккон прилагал какие-то усилия, чтобы оторвать приклеившуюся ногу, когда собирается сделать следующий шаг. В чем тут причина?

Ученые внимательно изучили лапки геккона под микроскопом. Выяснилось, что присоски снизу прикрыты листочками ткани, расположенными подобно страницам в книге с мягким переплетом. Такую книгу можно поставить вертикально – странички изогнутся, но книга устоит.

При большом увеличении видно, что каждый листочек покрыт сотнями тысяч тонких волосообразных щетинок. А щетинки, в свою очередь, делятся на сотни лопатообразных кончиков, диаметр каждого из которых всего 200 нм.

Когда ученые, имитируя движение лапки геккона, сначала прижимали щетинку к сенсору измерительного прибора, а затем отрывали, обнаружилось, что щетинка способна выдержать вес муравья! Однако ни особого разрежения, свойственного вакуумным присоскам, ни следов клея на щетинках обнаружить не удалось.

Как оказалось, здесь работают силы Ван-дер-Ваальса, или, говоря иначе, силы межмолекулярного взаимодействия.

Теория сил Ван дер Ваальса очень сложна и основывается на квантовой механике. Молекулы веществ на малых расстояниях отталкиваются, а на больших притягиваются. Энергия Ван-дер-Ваальсовых сил притяжения составляет 0,419–4,19 кДж/моль. Эти силы малы и часто теряются на фоне более мощных сил. Но именно этими малыми силами умеет управлять геккон.

Когда он опускает лапку на поверхность, лопаточки на концах щетинок столь плотно прилегают к ней, что в работу включаются силы Ван дер Ваальса. Лапка как бы прилипает к вертикальной стене или потолку. Но чуть геккон напряжет мышцы и потянет лапку – силы Ван дер Ваальса исчезают, и лапка легко отделяется от поверхности.

Фантазия природы неистощима, когда она конструирует тот или иной живой организм. Изучением возможностей использования ее находок на благо человечества занимается наука бионика.

На основе изобретения геккона можно сделать липкую ленту, подобную скотчу, которую можно использовать повторно и даже в условиях невесомости (обычный скотч в космосе не работает). Можно изготовить обувь, которая не скользит на льду и прочно держит человека на вертикальной стене. Она облегчила бы жизнь не только альпинистам, монтажникам-скалолазам, но и нам, обычным людям. Но чтобы воспользоваться подобной идеей, надо крепко потрудиться биологам, физикам и математикам. Даром природа секреты не отдает!

Сила Ван-дер-Ваальса сила межмолекулярного притяжения, имеет три составляющие. Они обладают несколько отличной физической природой, но их потенциал зависит от расстояния между молекулами одинаково – как . Это счастливое обстоятельство позволяет непосредственно сравнивать константы взаимодействия, соответствующие трем составляющим силы Ван-дер-Ваальса, причем по причине их одинаковой зависимости от расстояния, пропорция между компонентами будет сохраняться при различных . Сами же константы при множителе будут отличаться для разных веществ.

В основе всех трех составляющих силы Ван-дер-Ваальса лежит взаимодействие диполей, поэтому напомним две основные формулы.

Энергия диполя помещенного в поле [1 ]:

(2)

Электрическое поле, создаваемое диполем [1 ]:

(3)
где n – единичный вектор в направлении
на диполь из точки, где ищем поле.

Ориентационное взаимодействие (или сила Кизома ) возникает между полярными молекулами, которые сами по себе имеют электрический дипольный момент. В соответствии с (2), (3) энергия взаимодействия двух диполей и на расстоянии

существенно зависит от взаимной ориентации молекул. Здесь – единичный вектор вдоль линии, соединяющей молекулы.

Чтобы обеспечить минимум потенциала, диполи стремятся расположиться в одном направлении вдоль общей оси (рис. 1) . Однако тепловое движение разрушает этот порядок. Для нахождения "результирующего" ориентационного потенциала необходимо провести статистическое усреднение взаимодействия по различной возможной ориентации пары молекул. Заметим, что в силу распределения Гиббса , которое показывает вероятность нахождения системы в состоянии с энергией при температуре , энергетически выгодные положения оказываются предпочтительнее. Поэтому, несмотря на изотропию возможной взаимной ориентации, результат усреднения будет ненулевым.

Рис. 1. Энергия взаимодействия диполей зависит от их взаимной ориентации.
Для нахождения "эффективного" потенциала необходимо провести термодинамическое усреднение
по всем пространственным направлениям диполей.

Усреднение по распределению Гиббса осуществляется по формуле

где в знаменателе для нормировки стоит статистическая сумма, а – параметр интегрирования, который обеспечивает перебор всех возможных состояний системы (взаимных ориентаций пары диполей).

При экспонента раскладывается в ряд:

и энергия ориентационного взаимодействия приближенно равна:

Проведя интегрирование, можно показать, что , и, таким образом, . Согласно (4) можно записать, введя константу :

Индукционное взаимодействие (или сила Дебая ) возникает между полярной и неполярной молекулами. Электрическое поле , создаваемое диполем наводит поляризацию на другую молекулу. Индуцированный момент, вычисленный в первом порядке квантовой теории возмущений, равен где обозначена поляризуемость молекулы.

Рис. 2. Под действием поля полярной молекулы соседняя приобретает
индуцированный дипольный момент.

Тогда потенциал индукционного взаимодействия вычисляется следующим образом:

Таким образом, взаимодействие опять-таки имеет "универсальную" зависимость , но уже по совершенно другой причине и с другой константой.

Следует оговориться, что в жидких и твердых телах поляризуемая молекула испытывает симметричное влияние большого количества соседних молекул, при этом результат их действия сильно компенсирует индукционное взаимодействие. Это приводит к тому, что реальное индукционное взаимодействие:

Дисперсионное взаимодействие (или сила Лондона ) является наиболее распространенным, т.к. в нем участвуют и неполярные молекулы. Этот третий член (1) присутствует всегда и в этом смысле является самым главным.

Рис. 3. Неполярные молекулы за счет квантовой неопределенности обладают "мгновенными"
дипольными моментами, взаимодействие которых возникает во втором порядке теории возмущений.

В системе из неполярных молекул волновая функция электронов такова, что средние значения дипольных моментов в любом состоянии равны нулю . Однако недиагональные матричные элементы нулю уже не равны. И оказывается, что вторая квантовомеханическая поправка к энергии взаимодействия будет уже ненулевой. Она, как известно [2 ], вычисляется по формуле:

где в качестве возмущения выступает (4), а , – энергии системы из двух молекул в каких-то состояниях и .

В некотором смысле, "мгновенные" значения дипольных моментов (при нулевой средней величине) отличны от нуля и взаимодействуют между собой. Причем во втором порядке малости усредненное значение такого "мгновенного" потенциала уже не исчезает, это и есть потенциал дисперсионного взаимодействия.

Поправка (11), как видно, пропорциональна второй степени возмущения . Отсюда видно, что

Постоянную называют константой Гамакера (здесь , – потенциалы ионизации, , – поляризуемости молекул).

Также можно дать классическую интерпретацию. Возникший из-за флуктуаций дипольный момент одной молекулы создает поле, которое в свою очередь поляризует вторую. Ненулевое теперь уже поле второй молекулы поляризует первую. Потенциал в этой своеобразной системы с "положительной обратной связью" рассчитывается аналогично индукционному взаимодействию.

Относительная роль разных видов сил Ван-дер-Ваальса приведена в таблице 1 [3, 4 ].

вещество
0.667 0 13.6 0 0 6.3
1.57 0 13.6 0 0 41.3
1.74 0 15.8 0 0 59.3
1.6 0 15.8 0 0 48
0.2 0 24.7 0 0 1.2
1.99 0.12 14.3 0.0034 0.057 67.5
2.63 1.03 13.7 18.6 5.4 105
1.48 1.84 18.0 197 10 48.8
2.24 1.5 11.7 87 10 72.6

Табл. 1. Значения поляризуемости, дипольного момента, потенциала ионизации и энергии различных видов слабых взаимодействий между некоторыми атомами и молекулами.

Понятно, что сила определяется как

Проводя оценки для типичных условий АСМ-эксперимента в режиме контакта, получаем для величины ван-дер-ваальсовского притяжения: .

Выводы.

Литература.

  1. Сивухин Д.В. Курс общей физики: Электричество. – М.: Наука, 1983. – 687 с.
  2. Ландау Л.Д. Квантовая механика: Нерелятивистская теория. – М.: Наука, 1989. – 767 с.
  3. Рубин А.Б. Биофизика: Теоретическая биофизика. - М.: Книжный дом Университет, 1999. – 448 с.
  4. Адамсон А. Физическая химия поверхностей. – М.: Мир,1979. – 568 с.

Открыты Й. Д. Ван дер Ваальсом в 1869 году .

Вандерваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ , жидкость и твёрдые тела).

К вандерваальсовым силам относятся взаимодействия между диполями (постоянными и наведёнными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса . Эти взаимодействия, а также водородные связи , определяют формирование пространственной структуры биологических макромолекул.

Вандерваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами .

Энциклопедичный YouTube

    1 / 3

    ✪ Силы Ван-дер-Ваальса | Силы межмолекулярного взаимодействия | Химия (видео 1)

    ✪ Урок 194. Уравнение Ван-дер-Ваальса

    ✪ Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

    Субтитры

    В нашем путешествии по химии, мы уже сталкивались с взаимодействиями между молекулами, с металлическими связями, которые образуются с помощью электронов, рассматривали взаимодействия между молекулами воды. Думаю, будет полезно рассмотреть разные типы межмолекулярных взаимодействий и их влияние на температуру кипения и плавления веществ. Начнем с самых слабых взаимодействий. Для примера возьмем гелий. Нарисую несколько атомов гелия. Давайте посмотрим в периодическую таблицу Менделеева, вместо гелия можно взять любой благородный газ. Благородным газам, можно сказать, повезло – их внешняя орбиталь полностью заполнена. Итак, неон или гелий… Давайте возьмем неон, у него на орбитали есть все восемь электронов. Неон записывается вот таким образом. И ему ничего не нужно. Он полностью доволен жизнью. И так как ему очень хорошо в таком состоянии, он инертен. У него нет причин быть активным. Об этих причинах мы еще поговорим. Электроны распределены вокруг атома равномерно. Это абсолютно нейтральный атом. Он не стремится образовать связь с другим атомом. Итак, электроны рассеяны вокруг атома и они не будут притягиваться и как-то взаимодействовать друг с другом. Но, оказывается, при пониженной температуре неон переходит в жидкое состояние, и сам факт этого означает, что возникают какие-то силы, и из-за них атомы неона присоединяются друг к другу. Это происходит при очень низкой температуре, потому что силы эти очень слабы. Поэтому в основном неон находится в состоянии газа. Но если его сильно охладить, возникают очень слабые силы и атомы или молекулы неона соединяются друг с другом. Эти силы возникают из-за того, что у электрона нет постоянной траектории движения вокруг ядра. Траектория вероятностная. Давайте возьмем неон, я не буду рисовать валентные электроны в таком виде, вместо этого я нарисую облако вероятности нахождения электрона в пространстве. Это конфигурация атома неона. Итак, 1s2, а 2s2, 2p6 – это внешний слой, да? В этом состоянии у электрона самая большая энергия. Как бы это нарисовать... У него есть 2s уровень. 1s-уровень находится внутри, еще в атоме есть p-орбитали. p-орбитали направлены в разные стороны. Но сейчас не об этом. У нас есть еще один атом неона, я нарисовал распределение вероятности. Получилось так себе. Но, думаю, вы поняли мысль. Посмотрите ролик об электронной конфигурации, если хотите подробнее рассмотреть эту тему, но смысл здесь в том, что распределение вероятности – это область пространства, где может находиться электрон. В какой-то момент времени здесь нет ни одного электрона. А в какой-то другой момент все электроны здесь. Тоже самое происходит и в этом неоне. Если вы подумаете о всех возможных конфигурациях электронов в этих двух атомах неона, вы увидите, что маловероятно, что электроны в них распределены равномерно. Намного более вероятным окажется то, что в каком-то из атомов электроны распределены неравномерно. Например, в этом атоме неона восемь валентных электронов расположены вот так: один, два, три, четыре, пять, шесть, семь, восемь. Что это значит? Возникает небольшой временный заряд, вот с этой стороны. Эта сторона более отрицательная, чем эта, или эта сторона более положительная чем та. Точно также, если в это же время у меня есть еще один атом неона, у него есть... у него есть один, два, три, четыре, пять, шесть, семь, восемь электронов. Нарисую немного по-другому. Предположим, этот атом неона вот такой: один, два, три, четыре, пять, шесть, семь, восемь. Выделю эти слабые силы темным цветом. Итак, здесь небольшой отрицательный заряд. Временный, только в этот момент, здесь отрицательный заряд. А здесь положительный. Эта сторона отрицательная. Эта сторона положительная. В этот момент между этими атомами неона возникает слабое притяжение, а потом оно исчезает, потому что электроны перемещаются. Но важно понимать, что моменты, когда электроны полностью рассеяны бывают очень-очень редко. Здесь всегда случайное распределение, здесь всегда есть некоторая, я не хочу сказать полярность, потому что это слишком сильное слово. Но всегда есть небольшой избыточный заряд на одной или другой стороне атома, и поэтому этот атом притягивается к сторонам других молекул с противоположным зарядом. Это очень, очень, очень слабая сила. Ее называют Лондоновская дисперсионная сила. Кстати, этот человек, Фриц Лондон, не британец. Он американский немец. Лондонская дисперсионная сила – это самая слабая из сил Ван-дер-Ваальса. Запишу этот термин. «Силы Ван-дер-Ваальса». Я его произношу. Силы Ван-дер-Ваальса – это класс межмолекулярных, или в нашем случае молекула неона - это атом. Это одноатомная молекула, так сказать. Силы Ван-дер-Ваальса – это класс сил межмолекулярного взаимодействия, это не ковалентные связи и не ионные связи, такие как мы видели в солях. Сейчас мы рассмотрим это подробнее. А сила Лондона – самая слабая из них. Так неон и другие благородные газы, между их молекулами действуют только дисперсионные силы, которые являются самыми слабыми межмолекулярными силами. И поэтому неон легко переходит в газообразное состояние. Благородные газы переходят в газообразное состояние при очень низкой температуре. Именно поэтому их называют благородными газами. Эти вещества ведут себя почти как идеальный газ, потому что их молекулы почти не взаимодействуют. Ладно. А теперь давайте посмотрим, что происходит, если молекулы притягиваются друг к другу сильнее, то есть они немного более полярные. Например, возьмем хлороводород. Водород может как притягивать, так и отдавать электроны. Хлор притягивает к себе электроны. У хлора довольно высокая электроотрицательность. Но меньше, чем у этих элементов. Самые сильные акцепторы электронов это азот, кислород и фтор, но у хлора тоже довольно высокая электроотрицательность. Итак, у меня есть хлороводород. Это атом хлора, у него семь электронов и один электрон он берет у водорода. Он делит электрон с водородом, я обозначу это вот так. Хлор более электроотрицательный, чем водород, поэтому электроны все время находятся ближе к нему. Там, где находятся электроны, возникает частичный отрицательный заряд, а здесь возникает частичный положительный заряд. Очень похоже на водородные связи. На самом деле это такой же тип связи, как и водородные, это диполь-дипольные связи или диполь-дипольное взаимодействие. Так, если у меня есть один такой атом хлора и второй атом хлора, вот такой. Давайте, лучше я просто скопирую и вставлю этот рисунок, вот здесь. В итоге эти атомы взаимодействуют. Атомы хлора притягиваются… Точнее притягиваются молекулы хлороводорода. Положительная сторона, положительный полюс этого диполя находится на водороде, потому что электроны находятся ближе к хлору, и положительный полюс притягивается к атому хлора другой молекулы. И поэтому эти силы Ван-дер-ваальса, это диполь-дипольное взаимодействие сильнее, чем дисперсионная сила Лондона. Дисперсионные силы присутствуют при любых межмолекулярных взаимодействиях. Просто они очень слабые по сравнению с другими типами межмолекулярных взаимодействий. Дисперсионные силы нужно учитывать только в случае веществ вроде благородных газов. Даже здесь действуют лондоновские дисперсионные силы, когда изменяется распределение электронов в какой-то момент времени. Но диполь-дипольное взаимодействие намного сильнее. А из-за того, что оно сильнее, хлороводороду нужно больше энергии, чтобы перейти в жидкое и газообразное состояние, чем гелию. А если электроотрицательность еще больше, самыми электроотрицательными являются азот, кислород и фтор, то мы будем иметь дело с особым видом диполь-дипольных взаимодействий, это водородная связь. Давайте возьмем фтороводород, HF, несколько молекул. Например, фтороводород здесь и здесь, еще нарисую здесь. У фтора очень высокая электроотрицательность. Это один из трех самых электроотрицательных атомов в периодической таблице. Он очень эффективно оттягивает электроны. Это случай очень сильного диполь-дипольного взаимодействия, здесь все электроны перемещаются ко фтору. Итак, здесь возникает частичный положительный заряд, и частичный отрицательный заряд, частичный положительный, частичный отрицательный, положительный, отрицательный и так далее. Итак, вот что у нас получилось. Это настоящее дипольное взаимодействие. Но это очень сильное дипольное взаимодействие, его называют водородная связь, потому что здесь взаимодействуют водород и атом с очень высокой электроотрицательностью, и электроотрицательный атом оттягивает к себе электрон водорода. Водород здесь в виде протона, у него положительный заряд, и он сильно притягивается к отрицательно заряженным концам диполей. Все это – силы Ван-дер-Ваальса. И самая слабая из них – дисперсионная сила. А если у нас есть молекула с электроотрицательным атомом, у нас образуется диполь, молекула становится полярной, и положительные и отрицательные полюса будут притягиваться. Это диполь-дипольное взаимодействие. Но самое сильное взаимодействие - это водородная связь, потому что атом с очень высокой электроотрицательностью полностью забирает к себе электрон водорода. Точнее, почти полностью забирает к себе электрон водорода. Эти атомы все еще делят электрон, но он почти всегда на этой стороне молекулы. Так молекулы сильнее связаны друг с другом и температура кипения будет больше. Итак, у нас есть дисперсионные силы Лондона, дипольные и полярные связи, и водородные связи. Все это - силы Ван-дер-Ваальса. Сила межмолекулярного взаимодействия растет и повышается температура кипения, потому что нужно затратить все больше и больше энергии, чтобы отделить эти молекулы друг от друга. У нас заканчивается время... Получился неплохой обзор разных типов межмолекулярных взаимодействий, не ковалентной и не ионной природы. В следующем ролике я расскажу о некоторых типах ковалентных и ионных структур, и об их влиянии на температуру кипения. Subtitles by the Amara.org community

Классификация вандерваальсовых сил

Вандерваальсово взаимодействие состоит из трёх типов слабых электромагнитных взаимодействий:

  • Ориентационные силы , диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твёрдом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
  • Дисперсионное притяжение (лондоновские силы, дисперсионные силы). Обусловлены взаимодействием между мгновенным и наведённым диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
  • Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что вандерваальсовы силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, «описывающие» свойства, в частности

Уравнение Ван-дер-Ваальса

В 1873 г. Ван-дер-Ваальс на основе молекулярной модели несжимаемых шаров диаметра D, притягивающих друг друга и притягиваемых друг другом, вывел свое удивительно простое уравнение. В реальном газе в результате молекулярного притяжения увеличивается кинетическое давление по сравнению с давлением в идеальном газе. Из самых общих соображений молекулярное притяжение пропорционально числу как притягивающих, так и притягиваемых молекул; Δp ~ N 2 . В результате молекулярного отталкивания свободный объем в реальном газе меньше, чем объем сосуда, занимаемого газом. Запрещенный объем вокруг каждой молекулы, в который не может попасть центр другой молекулы из-за взаимного отталкивания, Ван-дер-Ваальс оценил как объем сферы , где D - расстояние между центрами двух несжимаемых шаров диаметра D. Следовательно, полный запрещенный объем моля газа будет равен , т.е. равен учетверенному объему N a несжимаемых молекул.

Уравнение Клапейрона для идеального газа:

pV=N a kT (3.2);

Уравнение Ван-дер-Ваальса представляет собой уравнение Клапейрона, в которое введены перечисленные выше поправки на возросшее вследствие межмолекулярного взаимодействия кинетическое давление и уменьшенный реальный свободный объем:

или (3.3);

где a – постоянная, b4V 0 (V 0 – объем молекулы).

Если в качестве переменных P, V и T использовать их относительные значения P c =P/P k , T c =T/T k , V c =V/V k  (где P k , T k , V k – критические значения), то закон Ван-дер-Ваальса принимает вид универсального закона соответственных состояний:

– универсальная функция;

– универсальная постоянная.

Следствие из этого закона может быть сформулировано следующим образом: все вещества кипят при одних и тех же относительных давлениях и температурах. Или еще: относительные объемы всех веществ одинаковы при одних и тех же относительных давлениях и температурах. Уравнение Ван-дер-Ваальса можно записать и в другом виде:

(3.4);

т.е. представить в виде разложения потенциала притяжения по обратным степеням температуры, в котором учтен только первый член. Оправданием такого приближенияслужит предположение Ван-дер-Ваальса о дальнодействующем характере сил притяжения. В случае дальнодействия можно считать, что при переходе от одной конфигурации молекул к другой их потенциальная энергия не изменится, т.е. a = const вследствие того, что они находятся в среднем поле соседей с постоянной плотностью энергии .

Математическое и экспериментальное исследования этого уравнения показали, что поправки Ван-дер-Ваальса обладают глубоким физическим смыслом. Они качественно описывают не только изменения свойств системы, определяющих фазовый переход газ-жидкость, но и форму критической области. Кроме того, если силы притяжения нельзя рассматривать постоянными из-за близкодействия, то уравнение Ван-дер-Ваальса допускает следующее приближение с учетом члена 1/T 2 .

Ван-дер-Ваальс в 1873 году одним из первых указал на наличие нехимического межмолекулярного взаимодействия в аморфных состояниях вещества и разделил это взаимодействие на дальнодействующее притяжение и близкодействующее отталкивание. При этом он предложил до сих пор самую простую, но в тоже время достаточно точную в широком интервале температур и давлений, математическую модель для учета вышеперечисленных сил при расчете состояний реального газа. В связи с вышеуказанными обстоятельствами дальнодействующие силы межмолекулярного притяжения и близкодействующие силы межмолекулярного отталкивания назвали силами Ван-дер-Ваальса.

Как показывает квантовомеханический расчет энергия дальнодействующего межмолекулярного взаимодействия состоит из так называемой электростатической, и энергии возмущения второго порядка - индукционной и дисперсионной. Электростатическое взаимодействие возникает между дипольными моментами молекул, между ионами и диполями в растворах или сплавах. Для нейтральных молекул в электростатическом взаимодействии важно так называемое ориентационное взаимодействие постоянных дипольных моментов молекул.

Ориентационное, индукционное и дисперсионное взаимодействия - три важнейшие составляющие ван-дер-ваальсовых сил притяжения. Силы Ван-дер-Ваальса называют дальнодействующими, так как энергия ван-дер-ваальсового взаимодействия довольно медленно спадает с расстоянием и пропорциональны r -n .

Ориентационные взаимодействия Ван-дер-Ваальса

(эффект Кезома)

Рассмотрим возможные силы взаимодействия между двумя диполями.

Если два диполя расположены на одной прямой и одинаково ориентированы (рис. 3.4 а), то они притягиваются с силой обратно пропорциональной третьей степени расстояния между ними, установка диполей в "хвост".

Рис. 3.4. Расположение диполей.

Аналогичная сила действует между двумя противоположно направленными диполями, расположенными на параллельных прямых, на кратчайшем расстоянии друг от друга (рис. 3.4 б), установка диполей "один под другим" (антипараллельная установка диполей). В обоих случаях они ориентируются так, чтобы энергия системы стала минимальной (рис 3.4). Если диполи ориентированы не так, как показано на рис. 3.4 то между диполями кроме силы радиального взаимодействия (притяжение либо отталкивание) возникает крутящий момент.

В жидкостях и газах тепловое движение приводит ко всевозможным ориентациям молекул. При усреднении энергии взаимодействия по всем возможным ориентациям с учетом теплового движения, для жидкостей и газов расчет можно проводить по следующей формуле:

(3.5);

где s – расстояние между центрами диполей; µ 1 и µ 2 – крутящие моменты диполей.

Ориентационные взаимодействия Ван-дер-Ваальса играют определяющую роль в процессах электролитической диссоциации. Для наиболее полярных веществ связи Ван-дер-Ваальса ориентационной природы вносят наиболее существенный вклад в значения энергии и температуры плавления и сублимации (или кипения). Ориентационные взаимодействия Ван-дер-Ваальса, наряду с ван-дер-ваальсовыми индукционными взаимодействиями используются в абсорбционных и адсорбционных пылеочистных сооружениях, поэтому в качестве абсорбатов и адсотбатов в пылеочистных сооружениях практически всегда используются именно сильнополярные материалы .

Индукционные взаимодействия Ван-дер-Ваальса

(эффект Дебая)

Молекула, обладающая постоянным дипольным моментом, наводит в другой молекуле, неполярной или полярной, так называемый индуцированный дипольный момент. Величина индуцированного электрическим полем напряженности E дипольного момента  инд может быть представлена следующим рядом:  инд = E+E 2 + . Для электрических полей малой напряженности можно пренебречь всеми членами ряда, кроме первого, это приближение можно сделать для пары индукционно взаимодействующих диполей.  инд = E, где  - поляризуемость молекулы. Индуцированный дипольный момент имеет то же направление, что и линии напряженности электрического поля постоянного диполя вызвавшего появление наведенного дипольного момента у поляризуемой молекулы или радикала в точке нахождения поляризуемой молекулы (или соответственно радикала). Взаимодействие постоянного диполя одной молекулы (радикала, сложного иона) и наведенного им диполя второй молекулы (или вообще группы атомов) понижает потенциальную энергию системы из двух молекул и упрочняет систему .

Если учесть, что наводящая индуцированный дипольный момент молекула сама обладает поляризуемостью, расчет можно проводить по следующей формуле:

(3.6);

Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры. Последнее связано с тем, что ориентация наведенного дипольного момента не может быть произвольной, она однозначно определяется направлением и положением наводящего диполя в пространстве.

Величина энергиииндукционного взаимодействия U инд тем значительнее, чем выше поляризуемость молекул. Индукционное взаимодействие наблюдается: при образовании гидратов благородных газов, в растворах полярных веществ, в неполярных растворителях (например, ацетона в тэтрахлорметане) и т.п., но существенно только для молекул со значительной поляризуемостью; к ним, в первую очередь, относятся молекулы с сопряженными связями.

Индукционное взаимодействие не аддитивно. Это становится ясным, если рассмотреть неполярную частицу в поле двух симметрично расположенных диполей. Каждый из них, действуя сам, вызвал бы индукционный эффект, но совместное их действие взаимно уравновешивается, в результате чего дипольный момент у неполярной частицы не наводится, а следовательно энергия системы в рассматриваемом случае индукционным взаимодействием не понижается.

В следствие нераспространенности легко поляризуемых молекул и неаддитивности индукционных взаимодействий эффект Дебая никогда не бывает доминирующим по сравнению с эффектом Кезома (ориентационные взаимодействия) и с эффектом Лондона.

Дисперсионные взаимодействия Ван-дер-Ваальса

(эффект Лондона)

Существуют, однако, такие молекулы у которых нет не только дипольного электрического момента, но и электрических моментов более высокого порядка; это - сферически симметричные молекулы, прежде всего молекулы идеальных газов. Однако и благородные газы при охлаждении сжижаются, а при дальнейшем охлаждении (гелий - только под повышенным по сравнению с атмосферным давлением) кристаллизуются. Силы, приводящие к конденсации идеальных газов, называются дисперсионными ван-дер-ваальсовыми силами. Дисперсионные взаимодействия Ван-дер-Ваальса играют большую роль при взаимодействии и между всеми другими молекулами, без исключений.

Решение уравнения Шредингера для системы из двух молекул методом возмущений указывает на существование электростатического, индукционного и дисперсионного взаимодействий. Каждый из указанных эффектов имеет строгое квантово-механическое определение, но если ориентационный и индукционный эффекты можно понять также на основе представлений электростатики, то дисперсионное взаимодействие объяснимо только на основе квантовой механики .

Грубое модельное представление о дисперсионном взаимодействии между двумя атомами благородного газа можно составить, рассматривая протоны ядра атома и движущиеся вокруг ядра электроны как положительный и отрицательный полюсы вращающихся вокруг центра атома мгновенных электрических диполей.

Поскольку направление этих диполей меняется с частотой 10 15  циклов в секунду, вследствие чего атом не обладает дипольным моментом постоянного направления, в среднем по времени его дипольный момент равен нулю. Однако, при встрече двух атомов их мгновенные дипольные моменты ориентируются друг относительно друга, и их направления изменяются "в такт". Эта корреляция между направлениями мгновенных дипольных моментов атомов (или обладающих электронами ионов) уменьшает потенциальную энергию системы на величину, называемую энергией дисперсионного взаимодействия (или величиной эффекта Лондона).

Сущность эффекта Лондона заключается в том, что электроны в атомах и молекулах можно уподобить колеблющимся около ядра частицам – осцилляторам. Любой осциллятор, согласно современным квантовомеханическим представлениям, даже при абсолютном нуле температуры совершает так называемые нулевые колебания с энергией =h 0 /2 , где  0 - частота колебаний осциллятора.

(3.7);

Энергия дисперсионного взаимодействия, так же как ориентационного и индукционного взаимодействий, пары частиц обратно пропорциональна шестой степени расстояния; однако же для приближенного расчета теплоты испарения жидкости следует ввести поправочный коэффициент, учитывающий координационное число и другие факторы, т.е. параметры взаимодействия частицы с ее окружением.

Особенностью дисперсионного взаимодействия является его всеобщность – во всех молекулах есть движущиеся электроны, поэтому дисперсионное взаимодействие существенно для всех без исключения молекул, а для неполярных молекул эффект Лондона - главный и практически единственный источник сил Ван-дер-Ваальса (если расплав или кристалл неполярного вещества – недостаточно очищен от полярных примесей, то индукционное взаимодействие там может тоже быть представлено, но его вклад в этом случае – пренебрежимо мал). Дисперсионное взаимодействие вносит также определенный вклад в энергию связи ионов в молекулах и в ионных кристаллах.

Дисперсионные взаимодействия играют основную роль в межмолекулярных взаимодействиях подавляющего большинства веществ. Они также формируют гидрофобные оболочки клеточных органоидов и мембран. За счет гидрофобных (в основном дисперсионные, а также, отчасти, индукционные) связей неполярные участки радикалов аминокислот в структуре белка и радикалов нуклиотидов в структуре нуклеиновых кислот, радикалы липидов в липидных оболочках и т.п. располагаются упорядоченно; а не создают неопределенность положения в молекуле и органоиде в целом, свободно изгибаясь и мешая работе организма .

Ван-дер-ваальсово отталкивание

(эффект Паули)

Выше были описаны три основных типа дальнодействующих сил ответственных за ван-дер-ваальсовое притяжение между молекулами: эффекты Лондона, Кезома и Дебая. При сближении молекул (или их частей), наряду с вышеизложенными дальнодействующими силами, заметными становятся также короткодействующие силы, возникающие при перекрывании электронных облаков молекул (или частей молекул). На больших расстояниях эти силы несущественны, так как электронная плотность спадает практически до нуля уже на отдалении порядка 3Å от ядра атома.

Перекрывание электронных облаков может привести ко двоякого рода результатам: если у частиц имеются незаполненные целиком или низко лежащие свободные молекулярные орбитали, могут образоваться донорно-акцепторные, координационные, межмолекулярные и другие химические соединения; короткодействующие силы другого вида – силы ван-дер-ваальсового отталкивания, возникающие при перекрывании полностью заполненных атомных или молекулярных электронных оболочек, связанных с проявлением принципа Паули.

Принцип Паули (принцип исключения Паули, запрет Паули) играет фундаментальную роль в поведении многоэлектронных систем. Согласно принципу Паули на одной спин-орбитали не может находиться двух электронов с одинаковым набором четырех квантовых чисел. Принцип исключения Паули относится к основным законам природы и выражает одно из важнейших свойств не только электронов, но и всех других обладающих полуцелыми значениями спинового квантового числа микрочастиц (в том числе: протонов, нейтронов, многих других элементарных частиц, а также многих атомных ядер).

Силы ван-дер-ваальсового отталкивания – важнейшая компонента межмолекулярного взаимодействия. На коротких расстояниях они значительны и возрастают при сближении очень быстро. Энергию межмолекулярного отталкивания аппроксимируют обычно следующим выражением:

(3.8);

A и ρ – константы, определяемые при столкновении атомов инертных газов и простейших молекул .